Jika matriks \( A = \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix} \) sehingga \( A^2-2A+I \) adalah…
- \( \begin{pmatrix} 1 & 0 \\ 8 & 0 \end{pmatrix} \)
- \( \begin{pmatrix} 1 & 0 \\ 4 & 0 \end{pmatrix} \)
- \( \begin{pmatrix} 1 & 1 \\ 5 & 0 \end{pmatrix} \)
- \( \begin{pmatrix} 1 & 1 \\ 13 & 1 \end{pmatrix} \)
- \( \begin{pmatrix} 1 & 1 \\ 9 & 1 \end{pmatrix} \)
(SPMB 2007)
Pembahasan:
\begin{aligned} A^2-2A+I &= \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix}^2 - 2 \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\[8pt] &= \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix}\begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix}- \begin{pmatrix} 4 & 0 \\ 8 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\[8pt] &= \begin{pmatrix} 4 & 0 \\ 12 & 1 \end{pmatrix} - \begin{pmatrix} 4 & 0 \\ 8 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\[8pt] &= \begin{pmatrix} 4-4+1 & 0-0+0 \\ 12-8+0 & 1-2+1 \end{pmatrix} \\[8pt] &= \begin{pmatrix} 1 & 0 \\ 4 & 0 \end{pmatrix} \end{aligned}
Jawaban B.